Elucidation of Isotropic and Anisotropic Shear Elasticity of in vivo Soft Tissue using Planar Magnetic Resonance
نویسندگان
چکیده
Magnetic resonance elastography (MRE) is a noninvasive method that allows the determination of in vivo shear elasticity of soft tissues. In this thesis methods for the determination of isotropic and anisotropic shear elasticities from MRE wave data were developed and evaluated. All methods presented in this work are based on planar MRE, i.e. they are based on the measurement of a single displacement component in the image plane. This way measurement time in MRE is greatly reduced. However, this imposes specific requirements on data evaluation in order to determine significant elastic constants. On the basis of planar MRE experiments on tissue mimicking gels, human skeletal muscle and numerical simulations it is demonstrated that correct shear elasticities can be determined, taking into account a small set of experimental boundary conditions as well as the employment of complementary data evaluation strategies. This thesis is particularly focussed on the analysis of noise and image resolution on the determined elastic constants. Moreover, methods for determining anisotropic elasticity and analyzing shear wave scattering effects on MRE wave data are introduced. The investigated influences on wave amplitudes and wave lengths are compared and discussed to develop a simple measurement protocol for the evaluation of in vivo MRE data. All methods employed in this work are summarized in the appendix along with the corresponding computer code, which is available on demand.
منابع مشابه
Investigating anisotropic elasticity using MR-Elastography combined with Diffusion Tensor Imaging: Validation using anisotropic and viscoelastic phantoms
Introduction: Magnetic Resonance Elastography (MRE) is a non-invasive imaging technique which is capable of quantifying soft tissue elasticity in vivo [1]. Most MRE studies have assumed isotropic mechanical properties although many soft tissues possess anisotropic mechanical properties due to their fibrous structure, for instance skeletal muscle or brain white matter. We propose a technique whi...
متن کاملShear Waves Through Non Planar Interface Between Anisotropic Inhomogeneous and Visco-Elastic Half-Spaces
A problem of reflection and transmission of a plane shear wave incident at a corrugated interface between transversely isotropic inhomogeneous and visco-elastic half-spaces is investigated. Applying appropriate boundary conditions and using Rayleigh’s method of approximation expressions for reflection and transmission coefficients are obtained for the first and second order approximation of the...
متن کاملThe measurement of anisotropic elasticity in skeletal muscle using MR Elastography
T. Oida, Y. Kang, T. Azuma, J. Okamoto, A. Amano, L. Axel, O. Takizawa, S. Tsutsumi, T. Matsuda Graduate School of Informatics, Kyoto University, Kyoto, Kyoto, Japan, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Kyoto, Japan, Siem ens-Asahi Medical Technologies Ltd., Shinagawa-ku, Tokyo, Japan, Department of Radiology, New York University School of Medicine, New York, New Y...
متن کاملShear wave group velocity inversion in MR elastography of human skeletal muscle.
In vivo quantification of the anisotropic shear elasticity of soft tissue is an appealing objective of elastography techniques because elastic anisotropy can potentially provide specific information about structural alterations in diseased tissue. Here a method is introduced and applied to MR elastography (MRE) of skeletal muscle. With this method one can elucidate anisotropy by means of two sh...
متن کاملModelling the impulse diffraction field of shear waves in transverse isotropic viscoelastic medium.
The generation of shear waves from an ultrasound focused beam has been developed as a major concept for remote palpation using shear wave elastography (SWE). For muscular diagnostic applications, characteristics of the shear wave profile will strongly depend on characteristics of the transducer as well as the orientation of muscular fibers and the tissue viscoelastic properties. The numerical s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010